Abstract

The Electron-Ion Collider (EIC) is a future collider planned to be built at BNL in about a decade. It will provide physicists with high luminosity and highly polarized beams with a wide range of nuclei species at different energies, covering an extensive kinematic range. The EIC physics goals include measuring the Generalized Parton Distribution (GPD) from Deeply Virtual Compton Scattering (DVCS) and Deeply Virtual Meson Production (DVMP) experiments, performing precision 3D imaging of the nuclei structure, studying color confinement and hadronization mechanisms, and understanding the spin structure of the proton. In order to meet the physics goals of EIC, a highresolution electromagnetic calorimeter (EMCAL) is required to measure electrons and photons and to achieve good particle identification. We propose to develop a tungsten/shashlik (W/shashlik) EMCAL with better readout configuration to achieve better energy and position resolution. In this work, we will present the GEANT4 detector simulation results ofWand Pb shashlik EMCAL to study π0 merging probability as a function of π0 energy and the performance of position and energy resolutions of the EMCAL for ECCE design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.