Abstract
This paper studies the influence of main parameters on the mechanical properties and wear behaviour of functionally graded materials pure Aluminum reinforced by various weight fractions of aluminium oxide (Al2O3). A Functionally graded (FG) pure aluminium/Al2O3 tube was processed by horizontal centrifugal casting method. The hollow tube dimensions are 230 mm outer diameter x 12 mm thickness x 180 mm length. The properties of these FG tubes were compared with unreinforced alloy. Hardness and tensile results in the radial direction showed that the hardness and tensile in accordance with the gradient microstructure was improved from inner zone to outer zone. Wear tests were carried out for different test duration at a constant sliding speed of 8 m/s and loads applied are 14, 24 and 40 N. In all test conditions the wear rate in the outer layer was minimum compared to other layers. In the surface analysis, scanning electron microscope indicated the presence of delamination, wear debris and cracks. FG tubes reinforced by Al2O3 particles have increased mechanical properties and wear resistance compared to its unreinforced alloy (matrix alloy) and is suitable for use in automobile and transport applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.