Abstract

The present study aimed to synthesize membranes for hemodialysis based on polyetherimide (PEI) and polyvinylpyrrolidone (PVP), with chemical immobilization of heparin on its surface to increase blood compatibility. The synthesized PEI/PVP membranes were characterized by morphological analysis and transport properties, as well by infrared spectroscopy (FT-IR), protein adsorption, contact angle, activated partial thromboplastin time (aPTT), and platelet adhesion. Hydraulic permeability of the synthesized PEI membranes were comparable to those of current high flux clinical membranes; values of diffusive permeability and rejection for typical solutes were similar to those reported in literature. The immobilization of heparin, in turn, resulted in more hydrophilic membranes, with insignificant protein adsorption and platelet adhesion (as opposed to actual clinical membranes), indicating anti-thrombogenic characteristics as confirmed by increased aPTT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.