Abstract

Friction stir welding (FSW) has emerged as an attractive process for fabricating aerospace vehicles. Current FSW state-of-the-art uses large machines that are not portable. However, there is a growing need for fabrication and repair operations associated with in-space manufacturing. This need stems from a desire for prolonged missions and travel beyond low-earth orbit. To address this need, research and development is presented regarding two enabling technologies. The first is a self-adjusting and aligning (SAA) FSW tool that drastically reduces the axial force that has historically been quite large. The SAA-FSW tool is a bobbin style tool that floats freely, without any external actuators, along its vertical axis to adjust and align with the workpiece’s position and orientation. Successful butt welding of 1/8 in. (3.175 mm) thick aluminum 1100 was achieved in conjunction with a drastic reduction and near elimination of the axial process force. Along with the SAA-FSW, an innovative in-process monitor technique is presented in which a magnetoelastic force rate-of-change sensor is employed. The sensor consists of a magnetized FSW tool that is used to induce a voltage in a coil surrounding the tool when changes to the process forces occur. The sensor was able to detect 1/16 in. (1.5875 mm) diameter voids. It is concluded that these technologies could be applied toward the development of a portable FSW machine for use in space.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call