Abstract
Electrochemical biosensors are widely recognized in biosensing devices due to the fact that gives a direct, reliable, and reproducible measurement within a short period. During bio-interaction process and the generation of electrons, it produces electrochemical signals which can be measured using an electrochemical detector. A formaldehyde biosensor was successfully developed by depositing an ionic liquid (IL) (e.g., 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIM][Otf])), gold nanoparticles (AuNPs), and chitosan (CHIT), onto a glassy carbon electrode (GCE). The developed formaldehyde biosensor was analyzed for sensitivity, reproducibility, storage stability, and detection limits. Methylene blue was used as a redox indicator for increasing the electron transfer in the electrochemical cell. The developed biosensor measured the NADH electron from the NAD+ reduction at a potential of 0.4 V. Under optimal conditions, the differential pulse voltammetry (DPV) method detected a wider linear range of formaldehyde concentrations from 0.01 to 10 ppm within 5 s, with a detection limit of 0.1 ppm. The proposed method was successfully detected with the presence of formalin in fish samples, Lutjanus malabaricus and Thunnus Tonggol. The proposed method is a simple, rapid, and highly accurate, compared to the existing technique.
Highlights
The fast urbanization of society has led to an accumulation of many toxic elements, especially carcinogens in the environment
Formaldehyde is considered as a toxic element since it has been classified as Group 1 carcinogen to human beings by the International Agency for Research on Cancer (IARC)
The results showed that the oxidation of dissimilar number of transferred H or OH at various pH values, which led to a different response, formaldehyde involves a dissimilar number of transferred H+ or OH− at various pH values, which led reported previously by Lei et al [21]
Summary
The fast urbanization of society has led to an accumulation of many toxic elements, especially carcinogens in the environment. Formaldehyde is considered as a toxic element since it has been classified as Group 1 carcinogen to human beings by the International Agency for Research on Cancer (IARC). The fish vendors have learned to use formaldehyde, better known as formalin (40% formaldehyde), to preserve fish, as the chemical is a renowned food preservative. This has been proven by recent news and research, claiming the use of formaldehyde in fish preservation is very popular, in Asian countries [1,2]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.