Abstract
Foodborne spores are ubiquitous with extremely strong resistance, and pose a serious threat to food safety and human health. Therefore, rapid, sensitive, and selective detection of spores are crucial. In this study, a fluorescent probe was developed based on lanthanide ion (Eu3+)-labeled nano-silver-modified graphene oxide (GO-AgNPs-Eu3+) for the detection of 2,6-dipicolinic acid (DPA), a biomarker unique to spores, to allow quantitative spores detection. The GO-AgNPs-Eu3+ nano-fluorescent probe was loaded onto a polyvinylidene fluoride microfiltration membrane, and a smartphone-assisted portable GO-AgNPs-Eu3+ nanoparticles-based paper visual sensor was designed for rapid on-site quantitative and real-time online detection of spores. The results indicated that the developed probe achieved equilibrium binding with DPA within 5 min, and enhanced fluorescence emission through antenna effect. The fluorescence detection presented a good linear relationship in the DPA concentration range of 0–45 μM, with a DPA detection limit of 4.62 nM and spore detection limit of 104 cfu/mL. The developed sensor showed a change in fluorescence from blue to red with increasing DPA concentration, and this color change was quantitatively detected through smartphone RGB variations, with a detection limit of 13.1 μM for DPA and 6.3 cfu/mL for Bacillus subtilis spores. Subsequently, the sensitivity and selectivity of the developed sensor were verified using actual milk and water samples spiked with B. subtilis spores. The results of this study provided objective technological support for rapid detection of spores, which is important for reducing the occurrence of foodborne diseases and improving food safety.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.