Abstract

A floor slab constructed in conventional moment-resisting frames (MRFs) limits opening of gaps at the beam-to-column interfaces, causing losses of self-centering capability and preventing its use in steel post-tensioned (PT) moment frames. This work presents two novel slab schemes to reduce the restraints on the seismic responses of a PT frame. The first scheme uses a slab in typical MRFs with a modification so that near the connection, the metal deck is discontinuous and the longitudinal bar in the deck is debonded from concrete to minimize slab restraints. The second scheme uses truss elements to connect the slab and beams in only one bay (rigid bay) of the PT frame for transferring inertial forces from the floor to the frame. The sliding device is provided at one end of floor beams transverse to the PT frame, where sliding of the slab is expected. The cyclic behaviors of the bare connection and the connection with the first slab scheme are also evaluated by testing four connections. Additionally, how the rigid bay affects the cyclic behavior of the frame, distribution of column shear, beam axial force variation, and gap opening response near the beam-to-column interface is evaluated by conducting frame subassembly tests. The test results demonstrate that (1) the PT frame with any of two slab schemes develops large deformation capacities with small residual deformations, and (2) the column shear and beam axial force can be estimated based on the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.