Abstract

In recent years, the noise, one of environment problems, has been paid more attention. And the utilization of the high performance sound-proof materials is an effective method to solve the problem. However, traditional sound insulation materials, mostly made from concrete and plumbum, are of high hardness, heavy and difficult for design. In this paper, flexible sound-proof materials made from glass fabric reinforced polyurethane (PU) resin were developed. To maintain the soft features and effectiveness of particulate fillers, we used the PU resin filled with silica particles only in its hard segments. Both the sound-proof performance and flexural ability for the developed materials were evaluated. As a result, the influence of the silica content on material properties and the transmission loss were clarified. Although the increment of silica content may decrease the flexural ability and increase the loop hardness even up to 50%, the loop hardness was about 1N, which still indicated the excellent flexibility. The effectiveness of the PU hybrid with hard segments of silica particles on the sound-proof behavior was confirmed and this resulted in the developed materials with high performance of sound-proof even for very thin and low area density one. The influence of the silica content and area density on both flexible ability and sound performance are also made clear. Furthermore, the prediction of transmission loss is conducted and a good agreement with the experimental results was obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.