Abstract

As the penetration level of grid-connected PV systems increases, more advanced control functionality is demanded. In order to ensure smooth and friendly grid integration as well as enable more PV installations, the power generated by PV systems needs to be flexible and capable of: 1) limiting the maximum feed-in power, 2) ensuring a smooth change rate, and 3) providing a power reserve. Besides, such flexible power control functionalities have to be achieved in a cost-effective way in order to ensure the competitiveness of solar energy. Therefore, this paper explores flexible active power control strategies for grid-connected PV inverters by modifying maximum power point tracking algorithms, where the PV power is regulated by changing the operating point of the PV system. In this way, no extra equipment is needed, being a cost-effective solution. Experiments on a 3-kW grid-connected PV system have been performed, where the developed flexible active power control functionalities are achieved per demands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call