Abstract
This work presents the development of first-principles bromide ion–water interaction potentials using the mobile charge density in harmonic oscillators-type model. This model allows for a flexible and polarizable character of the interacting molecules and has already been parametrized for water–water interactions. The prospected potential energy surfaces of the bromide ion-water system were computed quantum-mechanically at Hartree–Fock and Møller–Plesset second-order perturbation levels. In addition to the ion–solvent molecule pair, structures formed by the anion and two or three water molecules were considered in order to include many body effects. Minimizations of hydrated bromide clusters in gas phase [Br(H2O)n]− (n=1–6,10,15,20) and Monte Carlo computations of bromide aqueous solutions were performed to test the new potentials. Both structural and thermodynamic properties have been studied in detail and compared to the available experimental and theoretical values. From these comparisons, it was concluded the importance of including basis set superposition error corrections for the two-body interactions, and the small role of both electron correlation on the three-body terms and the four-body terms. Monte Carlo simulation results have also been used to investigate if the presence of the anion significantly affects the intramolecular geometry of the water molecules and the degree of disruption of the water solvent structure in its vicinity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.