Abstract

Pesticides are extensively used to control pests, diseases, and weeds in order to increase agricultural production. Usage of indiscriminate doses and persistent pesticides has not only caused resistance issues in insect pests but has also had deleterious effects on non-target organisms (beneficial insects, fish, and wildlife) and caused environmental contamination (soil, water, and air) through leaching, overflow, and insecticide spray drift. Exposure from eating food and drinking water contaminated to pesticide residues is also affecting human health. This study was conducted to obtain information to reduce pesticide resistance and environmental pollution. A cotton dusky bug (Oxycarenus hyalinipennis) population was collected from a farmer's field and exposed to fipronil for 18 generations. In comparison to an unselected strain (XYZ-FS) and a field population (Field-Popn), the fipronil-selected strain of O. hyalinipennis (XYZ-FR) developed a 2631.50-fold level of resistance and a 202.42-fold resistance level respectively. Significantly higher fecundity was observed in the XYZ-FS (24.93) compared to that of Hybrid2 (XYZ-FR ♀ XYZ-FS ♂) (17.60), Hybrid1 (XYZ-FR ♂ × XYZ-FS ♀) (17.13), and XYZ-FR (12.6). The intrinsic rate of natural increase, relative fitness and biotic potential were highest in XYZ-FS, followed by Hybrid2, Hybrid1, and XYZ-FR. The XYZ-FR strain of O. hyalinipennis had very low cross-resistance to profenofos (1.15–2.83-fold), and emamectin benzoate (1.09–2.86-fold) and moderate resistance to bifenthrin (5.49–24.54-fold) when selection progressed from G4 to G19. The proper use of this pesticide, along with rotation and a high-dose strategy may helpful to reduce the risk of resistance development and also its negative impacts on the environment and humans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call