Abstract
The aim of this work was to develop biodegradable films based on blends of Amaranthus cruentus flour and poly(vinyl alcohol). Five different PVA types were tested. Blends with higher hydrolysis (HD) degree PVA were more resistant, showing greater tensile strength (TS) and puncture force (PF). However, the films with PVA with lower HD showed more flexibility, greater elongation at break (ELO) and greater puncture deformation (PD), with the exception of PVA 325. The latter was chosen due to it superior mechanical performance (TS = 10.2 MPa, ELO = 89.8%, PF = 9.4 N and PD = 16.3%). When films based on blends of amaranth flour and PVA 325 (10–50%) were evaluated, all mechanical properties were enhanced with increase in PVA 325 content. The solubility in water of the films made with PVA and amaranth flour decreased with increasing PVA content, reaching 44% of soluble matter for the 50% PVA film. The formation of hydrogen bonds between the blend components was confirmed by the FTIR spectra analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.