Abstract

AbstractThe formation dynamics of fibrillar morphology in dilute immiscible polypropylene (PP)/polystyrene blends under simple shear flow is investigated using optical‐shear technique. Two strategies in generating fibrillar droplets under shear flow, namely temperature quench and shear jump, are studied. It is found that the shear‐induced deformation of PP droplets is closely related to the total shear strain and changes of rheological properties of components during the temperature quench or shear‐jump process. The shape evolution of fibrillar droplets under shear flow displays large deviation to the prediction of affine deformation theory based on Newtonian fluids and that of three deformation models, which consider the viscoelastic properties of components. The possible effect of droplet coalescence, breakup, and interfacial slip on the deviation between the experimental data and the prediction values for droplet deformation are discussed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.