Abstract

Recent developments on broadband optical sources emitting at 1050 nm wavelength for medical applications, in particular optical coherence tomography (OCT), have revealed enhanced depth penetration into the choroid, reduced scattering losses and improved image performances in eyes with turbid media, when compared to the most commercial used semiconductor optical source technology at 820 nm. In this paper, we present our study of fibre optic broadband sources (BBS) at 1 micron region, based on the amplified spontaneous emission (ASE) from rare-earth doped silica fibres for the integration into OCT systems. The target specifications for this type of sources are: 1050 nm central emission wavelength, with spectral width of ~70 nm, tens of miliwatts of output power and smoothly shaped output spectra. Several combinations of rare-earth doped optical fibres integrated into different fibre optic configurations have been tested. Optical bandwidth optimization and spectral shaping using different fibre optic techniques are presented and their autocorrelation function compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.