Abstract

In this study, the mechanical and corrosion characteristics of a corrosion-resistant layer made of stainless steel (STS) 316 L and Fe–Cr–Si alloy powder were investigated using laser-directed energy deposition (DED). In the STS 316 L deposited specimen, both the substrate and deposited layer were face-centred cubic (FCC). The deposited Fe–Cr–Si layer was clearly separated from the substrate because it was composed of body-centred cubic (BCC). Despite the phase differences, the surface of the Fe–Cr–Si-deposited layer showed a lower corrosion rate than that of the STS 316 L. All the deposited specimens exhibited typical high-temperature tensile behavior. However, the Fe–Cr–Si deposited layer at 600 °C showed a notable reduction in strength and increased elongation compared to the room temperature (RT) and 300 °C test results owing to the carbide concentration and phase transformation in the deposited layer. Because nuclear facilities mainly operate at temperatures below 600 °C, Fe–Cr–Si materials can also be used as nuclear piping coating materials. This study provides a mechanism for the high-temperature properties and corrosion resistance of the Fe–Cr–Si deposited layer and makes it competitive for application in fourth generation nuclear power systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call