Abstract

AbstractDespite ensuring the integrity of bogie frames for railway vehicles via nondestructive inspections during periodic maintenance, the possibility of fatigue cracks occurring at locations other than the predetermined inspection points cannot be dismissed. Therefore, fatigue cracks can be prevented more efficiently by assessing the overall degree of fatigue damage to the entire bogie frame and determining the results via nondestructive inspections. In this study, dynamic stresses in the bogie frame during running were estimated via finite element dynamic analysis by using the axle box acceleration as input, and the degree of fatigue damage and life were calculated from the waveform of the estimated stresses. Furthermore, we developed a bogie frame fatigue prediction system based on a high‐speed and high‐precision stress calculation method. The developed system visualized the overall relative life.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.