Abstract

The influence of surface hardening by electrochemical treatment, abrasive-free ultrasonic finishing treatment, and their combination on the accumulation of fatigue damages in a pseudo-α-titanium alloy (PT3V) during pulsed cyclic loading in a transition stage of fatigue (104–105 cycles) is studied. The fatigue damage accumulation kinetics is estimated using the inelasticity parameters of a specimen (hysteresis loop width, cyclic creep, rigidity (compliance)) during cyclic loading, an analysis of fracture surfaces, and the crack growth rate. The state of surface layer is shown to play a key role in the change in the fatigue life of laboratory specimens. The type of surface hardening only weakly affects the accumulation of fatigue damages at the stages of stable crack growth and rupture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.