Abstract

The study aimed to find the best trade-off between separation of the most critical peak pair and analysis time, in enantioselective GC–FID and GC–MS analysis of lavender essential oil, using the GC method-translation approach. Analysis conditions were first optimized for conventional 25 m × 0.25 mm inner diameter ( d c ) column coated with 6 I–VII- O- tert-butyldimethylsilyl-2 I–VII-3 I–VII- O-ethyl-β-cyclodextrin (CD) as chiral stationary phase (CSP) diluted at 30% in PS086 (polymethylphenylpolysiloxane, 15% phenyl), starting from routine analysis. The optimal multi-rate temperature program for a pre-set column pressure was determined and then used to find the pressures producing the efficiency-optimized flow (EOF) and speed-optimized flow (SOF). This method was transferred to a shorter narrow-bore (NB) column (11 m × 0.10 mm) using method-translation software, keeping peak elution order and separation. Optimization of the enantioselective GC method with the translation approach markedly reduced the analysis time of the lavender essential oil, from about 87 min with the routine method to 40 min with an optimal multi-rate temperature program and initial flow with a conventional inner diameter column, and to 15 min with FID as detector or 13.5 min with MS with a corresponding narrow-bore column, while keeping enantiomer separation and efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.