Abstract

Extragalactic background light (EBL) consists of entire radiation emitted throughout the cosmic history and is one crucial observable quantity to study astrophysics in the early universe, such as first stellar objects or primordial black holes. In the visible and near-infrared, zodiacal light (ZL), sunlight scattered by interplanetary dust, is the brightest foreground for observer in the near-earth orbit and its uncertainty limits accuracy of the EBL measurement. To overcome this problem, observations from heliocentric distance beyond 5 au, where the ZL is negligible, is promising. To achieve the EBL observation in deep space, we have been developing EXo- Zodiacal Infrared Telescope (EXZIT) onboard a solar sail spacecraft to Jovian Trojans planned in Japan around 2030. According to our mission study, a three-mirror reflective telescope optics design with a 90mm × 50mm effective aperture and 16 deg × 8 deg field of view (FoV) followed by a focal plane array HAWAII-2RG with a linear variable filter makes available to detect the EBL at high significance in 0.4–1.6 μm with specific wavelength resolution of ∼ 20 . In the present study, we develop test optics to demonstrate optical performance in room temperature for the future observation. By adopting only mirrors of aspherical surface, we design the optics whose aberration is minimized to show point spread function (PSF) of approximately 3 pix × 3 pix on the focal plane. The mirrors are fabricated by machining aluminum alloy A6061 with a honeycomb processing on the back surface to reduce the mirror mass. After integrating and aligning the mirrors with support jigs, we measure the PSF on the focal plane by a visible camera by inserting collimated beam of different angle of incidence, covering the whole FoV. We evaluate the PSF size by analyzing encircled energy in comparison with that expected from the ray-trace simulation of the optics. Throughout the FoV of the optics, the measured PSF size is comparable to the simulation. The present study demonstrates the precision machining of the aspherical mirrors and the optical performance of the designed optics. As a next step, we plan to develop thermal structure of EXZIT to demonstrate the optical performance in low temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.