Abstract

Eu3+-doped lithium phosphate glasses, (63-x) P2O5–32Li2O–5Al2O3‒xEu2O3, where 0≤x≤5 mol% concentrations were prepared by conventional melt-quenching technique. The glasses were characterized through various physical and optical properties at room and low temperatures (10K). The radiative transition probability, stimulated emission cross-section, branching ratio and radiative lifetime of the glasses were evaluated following the Judd-Ofelt theory. Two-fold increase in the photoluminescence (PL) intensity was observed under 394 nm excitation at 10K as compared to that measured at room temperature. The absence of 7F1→5D3,1 excitation transition at 10K was found due to a decrease in thermal energy of ground states. The presence of O2−−Eu3+ charge transfer excitation band (CTB, 200–275 nm) was observed. An optimum PL emission was recorded in the glass with 3 mol%, whereas the concentration quenching was noticed for the sample with 5 mol%. The results show that the Eu3+-doped lithium phosphate glasses could be potential candidates for red laser applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.