Abstract

In this study, dry sand impact and linear polarization resistance (LPR) monitoring techniques were used to study the detrimental effects of the sand size on surface morphology of the mild steel. An electrochemical mechanism was developed to measure the resistance of the metal coupons rotating in a slurry of 4wt% NaCl and 5wt% sand. Scanning probe microscopy (SPM) and hardness testing of the eroded coupons were conducted to elaborate their surface topography. In-depth analysis revealed that not only the larger particles but smaller particles as well caused significant erosion-corrosion of the steel coupons. It was noticed that hardness and density of the erodent particles were reasonably high to induce the plastic deformation and micro-structures at the metal surface. The LPR measurements revealed high coupon resistance in the fine sand slurry than in the coarse sand slurry. The localized corrosion and erosion-corrosion attacks on the metal surface were also supplemented with the stirring rate and the presence of NaCl in the solution. The corrosion rate was sharply increased with an increase in stirring rate above 500rpm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.