Abstract
Background and aimsRecent studies have shown that low molecular weight heparins are effective in the treatment of inflammatory bowel disease. Therefore, there is considerable interest in the development of an oral colonic delivery pharmaceutical system allowing targeted release of heparin in the inflamed tissue. The objective of this study was to prepare microparticles for the oral administration and colonic release of enoxaparin and to evaluate the influence of certain formulation factors on their characteristics.MethodsMicroparticles were prepared by water/oil/water double emulsion technique followed by solvent evaporation. The influence of several formulation factors on the characteristics of microparticles were evaluated. The formulation factors were alginate concentration in the inner aqueous phase, polymer (Eudragit® FS 30D and Eudragit® RS PO) concentration in the organic phase and ratios between the two polymers. The microparticles were characterized in terms of morphology, size, entrapment efficiency and enoxaparin release.ResultsThe results showed that increasing sodium alginate percentage reduced the encapsulation efficiency of enoxaparin and accelerated enoxaparin release. Regarding the influence of the two polymers, reducing polymer concentration in the organic phase led to a smaller size of microparticles, a lower entrapment efficiency and an important retardation of enoxaparin release. The formulation prepared with Eudragit® FS 30D limited the release to a maximum of 3% in gastric simulated environment, a specific characteristic of oral systems for colonic delivery, and fulfilled our objective to delay the release.ConclusionsMicroparticles prepared with Eudragit® FS 30D represent a suitable and potential oral system for the colonic delivery of enoxaparin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.