Abstract

In this study, Engineered/Strain-Hardening Cementitious Composites (ECC/SHCC) using artificial fine aggregates [i.e., geopolymer aggregates (GPA) and cement-bonded aggregates (CBA)] were developed for the first time. The developed GPA-ECC and CBA-ECC showed a compressive strength over 120 MPa, and the GPA-ECC recorded the highest tensile strain capacity (9.0%) among the existing ambient-cured high-strength ECC in literature. Compared with fine silica sand ECC (FSS-ECC) as a control mix, GPA-ECC and CBA-ECC showed lower compressive and tensile strength, owing to their lower aggregate strengths. From digital image correlation analysis, a more saturated multiple cracking behavior was observed for GPA-ECC as compared to CBA-ECC and FSS-ECC. In addition, the use of artificial aggregates had marginal effect on the crack width distribution of high-strength ECC. The findings in this study demonstrate the feasibility of using artificial fine aggregates in ECC production and provide a new avenue to improve ductility and sustainability for ECC materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call