Abstract

Failure due to delamination of composite laminates via low velocity impact damages is critical because of the subsurface nature of delamination. Traditional methods such as stitching and Z-pinning, while improving interlaminar properties in woven composites, lead to a reduction of the in-plane properties. Electrospun non-woven sheets of nanofibrous mat applied at interfacial regions offer an option to traditional treatments. The objective of the present study is to observe the energy absorption during the event of an impact upon a composite laminate. The use of Tetra Ethyl Orthosilicate (TEOS) chemically engineered glass nanofibers manufactured using electrospinning technique in woven glass fiber resin pre-impregnated composite laminates were investigated for their potential to improve the interlaminar properties. Electrospun glass nanofibers pre-impregnated woven mats were manufactured using a vacuum bag and cured in a computer controlled convection oven. The interlaminar properties of the nano engineered hybrid composites were obtained using low velocity impact tests and are compared with those without the presence of electrospun nanofiber layers, to study their influence. Impacted specimens were examined using C-scan analysis to detect impact damage dimensions. It was observed when electrospinning nanofibers were added to lamina interfaces, the electrospun fiber embedded coupons had larger impact damage area compared to the coupons without electrospun fiber layers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call