Abstract
Friction Stir Processing (FSP) has been established as a potential solid state production method to prepare aluminum matrix composites (AMCs). FSP was effectively applied to produce AA6082 AMCs reinforced with various ceramic particles such as SiC, Al2O3, TiC, B4C and WC in this work. Empirical relationships were estimated to predict the influence of FSP process parameters on the properties such as area of stir zone, microhardness and wear rate of AMCs. FSP experiments were executed using a central composite rotatable design consisting of four factors and five levels. The FSP parameters analyzed were tool rotational speed, traverse speed, groove width and type of ceramic particle. The effect of those parameters on the properties of AMCs was deduced using the developed empirical relationships. The predicted trends were explained with the aid of observed macro and microstructures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Science and Technology, an International Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.