Abstract

This study estimated the greenhouse gas emissions (GHGs) and net energy ratio (NER) for producing hydrogenation-derived renewable diesel (HDRD) from canola and camelina in Western Canada. Using 1 MJ of energy in the HDRD produced as the functional unit, a variety of scenarios were evaluated to account for variations in allocation methods, co-products, oilseed yield, N2O emission factor, and land use change (LUC). In producing HDRD, the farming stage and the oil conversion stage (i.e. the HDRD production stage) are the most energy and emission intensive. For canola based HDRD, the GHGs and NERs lie in the ranges of 33–94 gCO2e/MJ and 1.2–2.2 MJ/MJ respectively. For camelina based HDRD, the GHGs and NERs range from 30 – 82 gCO2e/MJ and 1.0–2.3 MJ/MJ respectively. In the base scenario (mass allocation; oilseed meal and propane fuel gas co-products; average yield; 0.76% N2O emission factor; LUC ignored), HDRD from camelina (38 gCO2e/MJ, 2.0 MJ/MJ) is environmentally superior to HDRD from canola (48 gCO2e/MJ, 1.7 MJ/MJ) due to lower agricultural inputs and higher yield for camelina. Considering all of the scenarios examined, HDRD from both crops appears to be more sustainable than fossil diesel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.