Abstract

Transition-edge sensor microcalorimeter arrays in compact geometries and large formats experience local heating from bias power and x-ray hits that must be dissipated in the frame. For devices on solid, non-perforated silicon substrates, we have introduced an underlying embedded copper heatsinking layer to enhance the ability of the frame to remove this heat. In particular, such a layer can mitigate thermal crosstalk between nearby pixels within the array. Further improvements in array performance, such as decreased magnetic field sensitivity and stray inductance, are possible by turning the heatsinking layer into a superconducting ground plane. In this presentation, we report on the development of heatsinking layers consisting of a 1-2 μm thick high-quality copper layer which is sandwiched between two thin refractory metal-based diffusion barriers. These diffusion barriers are designed to avoid copper migration into the surrounding material over time, especially during our high temperature TES fabrication process which takes place in excess of 400°C . A 0.3-0.5 μm thick PECVD SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> cover layer isolates the heatsinking layer from the detector circuit. We present first results on our attempt to tailor the materials forming the diffusion barrier to fabricate both well defined superconducting ground planes and non-superconducting layers with the desired barrier characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.