Abstract

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) stimulates the plasma B cells to secrete specific antibodies against the viral antigen. However, not all antibodies can prevent the virus from entering the cells. The subpopulation of antibodies which blocks the entry of the virus into host cells is termed neutralizing antibodies (NAbs). The gold standard test for the detection of NAbs is the viral plaque reduction and neutralization test; however, various other methods can also be utilized to detect NAbs. In this study, we have developed an Enzyme Linked Immunosobent Assay (ELISA)-based protocol for rapid detection of SARS CoV-2 NAb by inhibiting the binding of the spike protein receptor-binding domain to angiotensin converting enzyme 2 and compared it with cPASS neutralizing antibody kit, which was approved by the Food and Drug Administration (FDA). The results obtained suggest that the in-house ELISA developed for the detection of NAbs against SARS-CoV-2 is rapid and reliable. Compared to FDA-approved GenScript's cPass assay, the specificity and the sensitivity of the in-house-developed ELISA kit were 100% (95% confidence intervals of 69.15-100.00) and 96% (95% confidence intervals of 86.29-99.51), respectively. Thus, the ELISA protocol developed to test the neutralizing activities of antibodies is rapid, which requires a BSL-2 infrastructure facility and can be easily performed. It has very high potential applications in the rapid screening of NAb against SARS-CoV-2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.