Abstract

We have investigated the possibility of amorphous low molecular weight polyphenols as a chemically amplified positive-tone electron-beam (EB) resist. Low molecular weight polyphenol, 4'4-methylenebis{2-[di(2-methyl-4-hydroxy-5-cyclohexylphenyl)]methyl} phenol (3M6C-MBSA) as a base matrix, was protected by 1-ethoxyethyl (EE) groups to control the dissolution rate in 0.26 N tetramethylammonium hydroxide aq. developer. The film distribution in the depth direction for resist components with a Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) and the Fourier amplitude spectra of line-edge roughness (LER) have been investigated to understand the relationship between them for the resists formulated with 3M6C-MBSA and two types of photo acid generator (PAG), triphenylsulfonium perfluoro-1-butanesulfonate (TPS-PFBS) and triphenylsulfonium n-octanesulfonate (TPS-nOS). From these results, it was found that the resist film consisting of TPS-nOS showed more homogeneous in the depth film distribution than that with TPS-PFBS, and the resist with TPS-nOS also indicated the suppressed LER value of 5.1 nm in the wide frequency range. Therefore, the homogeneity of the resist film may affect the pattern LER.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.