Abstract
Real (electro)catalysts are often heterogeneous, and their activity and selectivity depend on the properties of specific active sites. Therefore, unveiling the so-called structure-activity relationship is essential for a rational search for better materials and, consequently, for the development of the field of (electro-)catalysis. Thus, spatially resolved techniques are powerful tools as they allow us to characterize and/or measure the activity and selectivity of different regions of heterogeneous catalysts. To take full advantage of that, we have developed spectroelectrochemical cells to perform spatially resolved analysis using X-ray nanoprobe synchrotron beamlines and conventional pieces of equipment. Here, we describe the techniques available at the Carnaúba beamline at the Sirius-LNLS storage ring, and then we show how our cells enable obtaining X-ray (XRF, XRD, XAS, etc.) and vibrational spectroscopy (FTIR and Raman) contrast images. Through some proof-of-concept experiments, we demonstrate how using a multi-technique approach could render a complete and detailed analysis of an (electro)catalyst overall performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.