Abstract

Summary Viscoelastic fluids are frequently used as drilling or fracturing fluids to enhance cuttings or proppant transport efficiency. The solid transport performance of these fluids largely depends on the settling behaviors of suspended particles. Different from viscoinelastic fluids, the elastic and viscous characteristics of viscoelastic fluids both affect particle settling behaviors. In this study, to separately quantify the contribution degrees of the shear viscosity and fluid elasticity on the terminal settling velocity, we decompose the total drag force into a viscous drag force and an elastic drag force. Based on the experimental data from the available literature, it is concluded that the elastic drag force is a function of the fluid elasticity, particle diameter, particle terminal settling velocity, and density difference between the fluid and particle. The formula for the elastic drag force is determined on the basis of the force analysis, and a relationship between the elastic drag coefficient and particle Reynolds number (Re) is developed. An explicit equation that directly predicts the terminal settling velocity in viscoelastic fluids is determined by correlating the dimensionless particle diameter and Re. To validate the proposed model, a total of 108 settling experiments in viscoelastic fluids are conducted. The absolute percentage error (APE) between the predicted and measured terminal settling velocities is 15.26%, which indicates that the proposed explicit terminal settling velocity equation can provide satisfactory prediction accuracy of the terminal settling velocity for particles in viscoelastic fluids. Furthermore, an illustrative example is provided to show that the proposed model can be used to calculate the required fluid elasticity to obtain the desired terminal settling velocity when the fluid shear viscosity is fixed. The proposed models are valid with a consistency index range of approximately 0.16 to 1.2 Pa⋅sn, flow behavior index range of approximately 0.282 to 0.579, an Re range of approximately 0.005 to 30, and a fluid relaxation time range of approximately 0.183 to 110 seconds. This study can help operators choose proper drilling/fracturing fluids to enhance the cuttings/proppant transport and maximize drilling/fracturing performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call