Abstract
Scheduling problem deals with the management of the resources in most optimal manner. In this research, open shop scheduling problem with an objective of minimising the makespan is considered. This problem comes under combinatorial category. Hence, development of an efficient heuristic is inevitable to minimise the makespan of the open shop scheduling problem. Meta-heuristic genetic algorithm (GA) is considered as it has the scope of improving performance measure of the problem. The performance of the genetic algorithm is influenced by selection method, crossover operator and mutation probability. Four different genetic algorithms are developed by varying selection method and crossover operator where three of this algorithm use newly proposed crossover operator while the fourth uses existing one-point crossover operator. A complete factorial experiment with three factors and three replications for each experimental combination is carried out on a set of problem instances with all the four genetic algorithm methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Advanced Operations Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.