Abstract

5-Ketogluconate (5KGA) is a precursor for synthesizing tartrate, a valuable compound used in several industries. In a previous study, Gluconobacter japonicus NBRC 3271 mutant strain D2, which lacks two membranous gluconate 2-dehydrogenases, was shown to produce 5KGA but not 2-ketogluconate from a mixture of glucose and gluconate. In this study, we aimed to develop an efficient 5KGA production system using G. japonicus D2 as the parental strain. D2 produced 5KGA from glucose in a jar fermentor culture; however, 5KGA levels were reduced during the late phase of cultivation. To increase the potential of D2 for 5KGA production, the cytoplasmic metabolism related to the utilization of 5KGA and gluconate was modified; the gno and gntK genes encoding 5KGA reductase and gluconokinase, respectively, were deleted from D2, generating D4. Improved 5KGA production was observed in D4 compared to that in D2, but a significant amount of gluconate remained at the end of cultivation, leading to an unsatisfied yield of 0.83mol (mol glucose)-1. The conversion of gluconate to 5KGA is catalyzed by pyrroloquinoline quinone (PQQ)-dependent glycerol dehydrogenase (GLDH), which easily forms an apoenzyme by releasing PQQ and calcium ions. Thus, the effects of CaCl2 addition to the culture medium on 5KGA production by D4 were investigated. We demonstrated that 1mM CaCl2 addition positively affected the maintenance of the PQQ-GLDH activity toward gluconate and consequently enhanced 5KGA production, and the yield reached 0.97mol (mol glucose)-1. KEY POINTS: • An efficient 5KGA production system was developed with Gluconobacter japonicus. • Deleting the gno and gntK genes blocked the catabolism of 5KGA and gluconate. • The addition of 1mM CaCl2 efficiently improved the conversion of glucose to 5KGA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call