Abstract

• Different ways to locate and orient current transformers on the printed circuit board are considered. • Several rectangular and triangular shielding geometries are simulated and compared in terms of their effectiveness. • Effectiveness of multilayer shields with a gap between layers for flux shunting is estimated. • Recommendations towards effective shielding of the electric energy meters are introduced. To maintain high efficiency, electric utility providers aim to minimize energy losses between points of generation and customer distribution. A significant share of these losses is nontechnical, such as losses from energy theft. One prevalent method of energy theft involves tampering with electricity meters by means of strong magnetic fields. In this study, different shielding structures were developed to protect the electric energy meters’ pulse current transformers from external magnetic fields, with respect to the allocation and orientation of these sensitive elements. Several shielding geometries, solid and multilayer shields were modeled and compared in terms of their efficiency for flux shunting. Based on the obtained results, recommendations for effective shielding against tampering were driven.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.