Abstract

In this study, a myofibrillar protein (MP) system was used to investigate the film properties changes by adjusting the intensity of the interaction of proteins with other food components. The structure and rheological properties of several film-forming solutions were then determined. Furthermore, the structure of these composite films was examined using Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The smooth and uniform surface acquired by scanning electron microscopy (SEM) substantiated the increased compatibility and continuity observed for films with greater food component interaction. In addition, the MP-based edible films with stronger food component interactions (the MP-Myr/ANT/NCC group) displayed superior mechanical (tensile strength: 6.68MPa, elongation at break: 94.43%), water vapor barrier (10.01×10-9gm-1s-1Pa-1), and ammonia sensitivity (total color difference: 17.00) capabilities compared to those of the other groups (the MP/ANT/NCC, MP-Lut/ANT/NCC, and MP-Que/ANT/NCC groups).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call