Abstract

The main aim of the present work is to evaluate and characterize the mechanical, morphological and thermal properties of wastes coming from the textile industry, mainly composed of cotton and polyester. These wastes will be thereafter implemented in commodity plastic such as polyamide, in order to develop new formulations of environmentally friendly materials. The composites were produced by extrusion and injection-molded processes in amounts between 15 wt.% and 60 wt.% of textile waste. With the objective of improving the properties of the materials, silanes were used as a compatibilizer between the textile fibers and the polymeric matrix. The effect of the compatibilizer in the composites was studied together with the effect of the amount of textile fiber added to the composites. Mechanical, thermal, morphological and wettability properties were analyzed for each composite. The results show that the use of silanes improves the interaction especially in those composites with a higher amount of textile waste, offering a balanced mechanical behavior with significantly high quantities. On the other hand, the melting temperature does not vary significantly with the introduction of silanes and textile waste content, although the incorporation of textile waste slightly reduces up to 23% the degradation temperature of the resulting composites. The wettability of the composites is also increased up to 16% with the incorporation of textile waste. Finally, the appearance of the composites with textile waste is strongly influenced by the incorporation of the reinforcement, offering shades close to dark brown in the whole range of compositions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.