Abstract

Current seismic codes are generally based on the use of response spectra in the computation of the seismic demand of structures. This study evaluates the use of energy concept in the determination of the seismic demand due to its potential to overcome the shortcomings found in the current response spectra–based methods. The emphasis of this study is placed on the computation of the input and plastic energy demand spectra directly derived from the energy-balance equation with respect to selected far-field ground motion obtained from Pacific Earthquake Engineering Research (PEER) database, soil classification according to National Earthquake Hazards Reduction Program (NEHRP) and characteristics of the structural behavior. The concept and methodology are described through extensive nonlinear time history analyses of single-degree-of-freedom (SDOF) systems. The proposed input and plastic energy demand spectra incorporate different soil types, elastic perfectly plastic constitutive model, 5% viscous damping ratio, different ductility levels, and varying seismic intensities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.