Abstract

Dynamic light scattering (DLS) techniques can provide information about the quantity, size, and motion of light scatterers within a volume based on temporal fluctuations in its light scattering profile. In DLS, autocorrelation functions (ACFs) are computed from light intensity vs time signals acquired from optical imaging setups. A parameter known as the decorrelation time is computed from each ACF and is inversely related to the average motion speed of scatterers within the imaging volume. Optical coherence tomography is an imaging modality that generates 2D cross-sectional images based on light backscattered from a sample, and the combination of DLS with OCT is known as dynamic light scattering optical coherence tomography (DLS-OCT). Previously, DLS-OCT has been used to detect apoptosis, a form of programmed cell death, in non-adherent leukemia cells. Cells undergoing apoptosis experience predictable morphological changes that results in an increase in intracellular motion, and therefore a decrease in decorrelation time. We applied DLS-OCT methods to quantify the decorrelation times in adherent breast cancer cell pellets that were either untreated, treated with 20 ng/mL paclitaxel for 24 or 48 hours, or deprived of media for 24 or 48 hours. The mean decorrelation times in the paclitaxel-treated and nutrient deprived groups were significantly lower than in the untreated cells (p<0.05), suggestive of increased intracellular motion due to morphological cellular changes associated with cell death. We also investigated a new model to fit to ACFs generated by DLS-OCT of cell pellets. Typically, ACFs are fit to single exponential decay curves. We developed a model that expresses the ACFs from in vitro experiments as a sum of multiple exponential decay curves using an algorithm known as CONTIN. The curves produced by CONTIN fitted the experimental data much better than the single exponential decay fits. We speculate that the CONTIN fits, each of which resembled a superposition of three exponential decay functions, may result from light scattered from three different types of scatterers within cells, such as lysosomes, mitochondria, and nuclei.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.