Abstract

In the present study, a new, simple, rapid, and environmentally friendly headspace-liquid phase microextraction method followed by gas chromatography–flame ionization detection has been developed for the extraction/preconcentration and determination of 1,4-dioxane from shampoo. The developed procedure is performed in a home-made extraction vessel, connected to a glass vial containing sample and extraction solvent. In this method, an aliquot weight of shampoo is mixed with a binary mixture of n-hexane and dichloromethane (50:50, v/v) as the extractant and the target analyte is extracted during a liquid–liquid extraction procedure. Then a home-made extraction vessel containing a few microliters of a collection/extraction solvent is contacted to a glass vial containing the organic phase obtained from the previous step. By heating 1,4-dioxane is vaporized and enriched in a μL volume of the collection/extraction solvent. Then an aliquot volume of the collected phase is injected into the separation system. The effect of several factors which may influence performance of the method, including kind and volume of the extraction solvents used in both steps, extraction temperature, extraction time, and salt addition were evaluated. Under the optimum extraction conditions, limits of detection and quantification for the target analyte were obtained 0.52 and 1.73 μg kg−1, respectively. Enrichment factor and extraction recovery were 333 and 89 %, respectively. The method precision was evaluated at a concentration of 25 μg kg−1 and relative standard deviation was less than 6.9 % for intra-day (n = 6) and inter-day (n = 4) precisions. Finally, the proposed method has been successfully applied in analysis of 1,4-dioxane in different shampoo samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.