Abstract
A new physics-based and computationally efficient drain current model for oxide semiconductor thin film transistors (TFTs) is developed. In this model, the influence of trap states in the band gap is taken into account to reproduce the gradual increase of the subthreshold current. Analytical expressions for the trapped electron densities are used to reduce the calculation time when solving the Poisson equation. The developed drain current model includes both drift and diffusion components, and it can thus be applied to the subthreshold, linear, and saturation regions. Calculations using the model produce results that are in good agreement with the measured drain current characteristics of amorphous indium gallium zinc oxide TFTs over a wide range of gate and drain voltages. The presented model is expected to play an important role in the analysis of TFT characteristics and the design of TFT structures to realize large-sized, high quality sheet-type displays with oxide semiconductor TFT backplanes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.