Abstract

The magnetic doxorubicin-encapsulated liposome/PEG/Fe3O4 (called as DOX@m-Lip/PEG) was synthesized and studied as a novel nanocarrier for the treatment of breast cancer in BALB/c mice. Nanocarrier was characterized by FT-IR, zeta-potential sizer, EDX elemental analysis, EDX mapping, TEM, and DLS techniques. The results showed that the size of the nanocarrier was determined around 128nm by TEM. EDX study confirmed PEG-conjugation in the magnetic liposomes and was homogenously distributed in the nanosize range (100-200nm) with a negative surface charge (-61.7mV). The kinetic studies indicated that the release of doxorubicin from DOX@m-Lip/PEG follows the Korsmeyer-Peppas model. The n-value of the model was 0.315, indicating that doxorubicin release from the nanocarrier had a slow releasing rate and followed Fick's law. The DOX release from the nanocarrier lasted a long time (more than 300h). In in vivo part, a mouse 4T1 breast tumor model was used. The in vivo results indicated that DOX@m-Lip/PEG caused much stronger tumor cell necrosis and less cardiotoxic effects than the other groups. In conclusion, we show that m-Lip/PEG is a promising nanocarrier for low dosage and slow release of doxorubicin in treating breast cancer, and treatment with encapsulated DOX (DOX@m-Lip/PEG) demonstrated higher efficacy with low cardiac toxicity. Besides, the magnetic property of m-Lip@PEG nanocarrier allows it to be a potent mater for hyperthermia and MRI studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call