Abstract

This article presents a localized surface plasmon resonance (LSPR) phenomenon based optical fiber sensor (OFS) for the detection of dopamine (DA). DA functions as a hormone and a neurotransmitter in the human body and plays a crucial role in the peripheral system. To develop the OFS for DA detection, taper fiber probe was fabricated and immobilized with silver nanoparticles (AgNPs) and functionalized with Polyethylene glycol (PEG). The developed sensor shows the great selectivity in the presence of ascorbic acid (AA) oxidation due to PEG coating. The morphology of the AgNPs and uniformity of coating over the surface of sensing probe were confirmed with UV-visible spectrophotometer, transmission electron microscope (TEM), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscope (SEM). The calibration curve is found to be linear over the range of 10nM-1μM with the lowest detection limit of 0.058μM. Also provides a wide dynamic range of detection (10nm-100μM). The parameters responsible for the performance of OFS, such as sensitivity, detection limit, and selectivity are greatly improved in the proposed sensor. The applicability of the proposed sensor has been validated and have the potential to use for routine diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.