Abstract

AbstractWe previously observed that as glucose is completely exhausted during ethanol fermentation, the dissolved carbon dioxide (DCO2) level in the fermenter will suddenly decline. This observation was implemented to design and develop a DCO2‐driven‐and‐controlled repeated batch fermentation process for ethanol production. The process was tested at four different glucose concentrations (~150 g/L, ~200 g/L, ~250 g/L, and ~300 g/L), and each glucose concentration was controlled under three respective DCO2 control levels (without DCO2 control, and DCO2 controlled at either 1000 mg/L or 750 mg/L). The results show that reported process features complete glucose utilization and is self‐driven. For glucose concentration less than 200 g/L, ~41%‐50% of fermentation time per batch was saved during the repeated batch operation. It took 12.1 ± 1.1 hours‐14.9 ± 1.9 hours to complete a batch with glucose feed at ~250 g/L and 21.7 ± 6 hours‐31.5 ± 7 hours to complete a batch with glucose feed at ~300 g/L. The reported process is time saving and stable, but the ethanol yield is ~20% lower than the operation without DCO2 control. Dissolved CO2 control became essential for glucose concentrations greater than 250 g/L if zero glucose discharge in each batch during the operation is desired.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.