Abstract

In the presented study, an efficient and fast analytical method was developed for the determination of parathion ethyl as sarin simulant by gas chromatography-mass spectrometry (GC-MS). Dispersive solid phase extraction (DSPE) was performed to concentrate parathion ethyl from soil, plant and water samples. Reduced graphene oxide-iron (II, III) oxide (rGO-Fe3O4) nanocomposite was used as an adsorbent to collect the target analyte from the aqueous sample solutions. After the optimization of extraction/preconcentration parameters, optimum conditions for adsorbent amount, eluent type, mixing type/period, eluent volume and initial sample volume were determined as 15mg, acetonitrile, vortex/30s, 100 µL and 10mL, respectively. Under the optimum conditions, analytical performance of the developed DSPE-GC-MS method was evaluated in terms of limit of detection (LOD), limit of quantitation (LOQ) and dynamic range. Dynamic range, LOD and LOQ values were figured out to be 0.94-235.15µg/kg, 0.41µg/kg and 1.36µg/kg (mass based), respectively. Satisfactory percent recovery results (90.3-125% for soil, 93.5-108.7% for plant, 88.5-112.9% for tap water) were achieved for soil, plant and tap water samples which proved the accuracy and applicability of the developed method. It is predicted that the DSPE-GC-MS method can be accurately used for the detection of sarin in soil, plant and water samples taken from war territories.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.