Abstract

Cellulose has attracted much attention as a potential substrate for low-cost, flexible electronics. Here, new cellulose-based films embedded with nano-silver (AgNs) and carbon (C) were successfully prepared. First, cellulose was oxidized to tricarboxy cellulose (TCC) using 2,2,6,6 tetramethylpiperidine-1-oxyl followed by periodate oxidation. Then, nano-silver was prepared by polyol method and carbon was prepared via a single-step from bagasse. The structure, thermal, morphology, mechanical properties, and broad-band were characterized by infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy with energy-dispersive X-ray, X-ray diffraction, and stress-strain relation. The results showed that the tensile strength and thermal stability of the films were improved. The temperature dependence of permittivity, ε′ of the TCC film, increased in two trends. However, TCC film shows non-conducting features, especially at lower temperatures; its nanocomposites films show a semiconducting behavior, and its ac-conductivity follows the empirical Jonscher law. Although the temperature dependence of dc-conductivity of the TCC/C, shows an Arrhenius behavior with low activation energy (≈3.74 kJ mol−1.), its investigated nanocomposites follow the well-known Vogel Fulcher Tamman equation according to the fragility of the prepared samples and/or the correlation between the interfacial polarization and conductivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call