Abstract

Dielectric elastomer actuators with high dielectric constant and flexibility were prepared. These actuators were fabricated by the composite of barium titanate (BaTiO3) and polyester-type thermosetting polyurethane (TSU), which was molecularly-designed to become less hard segment content. In this study, the effects of particle size, volume fraction and manufacturing method of BaTiO3 were investigated. In addition, the mechanically-stretched effect in composites was also evaluated. It turned out that the electrical breakdown strength increased with the increase of particle size of BaTiO3 and in volume fraction as well as the use of BaTiO3 synthesized by the oxalate method. In addition, prestrain of composites also raised the electrical breakdown strength. However, the addition of BaTiO3 to polyurethane didn’t contribute to the actuation under a lower electric field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.