Abstract

Microstructural morphology is known to have a significant impact on the mechanical properties of dual-phase steels. A fine ferrite grain size and random distribution of small second phase islands are desirable to provide superior isotropic properties compared to the banded second phase distribution that is typical for this type of steel. A rapid alloy prototyping (RAP) facility has been used to investigate three different DP 800 variants by systematically varying the compositions and/or process parameters compared to the ‘standard’ DP800 composition and processing that gives a banded microstructure. For Variant 1, the heating rate during the annealing cycle after cold rolling varied between 0.65 and 30 °C/s for the 45%, 60% and 75% cold reduction samples. It was found that a cold reduction of 75% and heating rate of 15 °C/s resulted in the microstructure that can give the best combination of strength and ductility because of the fine grain size and high martensite volume fraction. For Variant 2, the effect of changing the hot rolled (HR) microstructure (ferrite–pearlite, ferrite–bainite or martensite) on the final microstructure was investigated. Both the ferrite–50% bainite and fully martensite/bainite HR materials for all cold reductions resulted in annealed microstructures with necklace martensite morphology and finer ferrite grains compared to the ferrite–pearlite HR material, which gave a typical banded ferrite–martensite microstructure with a coarser ferrite grain size. For Variant 3, the Mn content was reduced, and increased Nb was used to achieve higher pancaking during the hot rolling stage, which refined ferrite grains in the HR condition with the same hardness. After annealing with the standard parameters only the 45% cold-reduced material produced a finer ferrite grain size than the standard material, whereas the 60% and 75% cold-reduced samples required a higher heating rate to achieve finer ferrite grain sizes due to rapid recrystallisation and growth kinetics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call