Abstract

We have developed a plasma-process analyzer based on the “combinatorial method”, in which process examinations with a continuous variation of sample-preparation conditions can be carried out in one execution of experiment via placing substrates on a substrate holder with an inclined distribution of process parameters (ion flux and radical flux) and the distributions of particle fluxes are finely controlled and characterized via particle diagnostics. In the present study, plasma-fluid simulations have been performed to show the feasibility of the combinatorial plasma-process analyzer, in which density inclinations of the plasma parameters (ion density, radical density) are obtained via sustaining plasmas by localized deposition of discharge power using low-inductance antenna modules. The simulation results showed that density-inclination plasmas were feasible by localized power deposition for sustaining plasmas, indicating that a variety of process conditions can be efficiently analyzed via placing substrates on a substrate holder, along which process parameters are inclined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call