Abstract

Force feedback devices have been recently adopted in virtual reality, rehabilitation, and medical training systems. Many of these devices convey the human forces sensed by the impedance control using motors; however, motorized actuators are disadvantaged by low output and backdrivability. To resolve these disadvantages, we developed a delta-type parallel-link robot using pneumatic artificial muscles and magnetorheological MR clutches. The artificial muscles deliver high output and backdrivability, while the MR clutches enable fast responses. Moreover, because the stiffness of its pneumatic artificial muscles directly responds to forces, our robot detects human forces without feedback from force sensors. This study introduces the prototype of our delta-type parallel-link robot, and evaluates its performance in elastic movement experiment. Finally, we confirmed that our prototype robot can obtain the stiffness and unloaded condition through its MR clutches without feedback from force sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.