Abstract

Spin- and angle-resolved photoemission spectroscopy ("spin-ARPES") is a powerful technique for probing the spin degree-of-freedom in materials with nontrivial topology, magnetism, and strong correlations. Spin-ARPES faces severe experimental challenges compared to conventional ARPES attributed to the dramatically lower efficiency of its detection mechanism, making it crucial for instrumentation developments that improve the overall performance of the technique. In this paper, we demonstrate the functionality of our spin-ARPES setup based on time-of-flight spectroscopy and introduce our recent development of an electrostatic deflector mode to map out spin-resolved band structures without sample rotation. We demonstrate the functionality by presenting the spin-resolved spectra of the topological insulator Bi2Te3 and describe in detail the spectrum calibrations based on numerical simulations. By implementing the deflector mode, we minimize the need for sample rotation during measurements, hence improving the overall efficiency of experiments on small or inhomogeneous samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.